Image via WikipediaI have to apologise for this blog being quiet for a bit, but as you know life can get in the way of a good time. I am back again for now and let's talk about quantum tunneling, I must say it would shorten my day's work if I could just get these little guys to tell me their secret.
Isn't is amazing and affirming that some of the greatest theories of quantum science are finally being explained or observed? Quantum Tunneling, the act of electrons taking the shortest route between two points by 'tunneling' their way through the quantum field has been observed. We might have to climb all the way over that mountain but electrons, simply tunnel on through.
"The electrons overcome the attraction of the atomic nucleus by tunnelling through a potential wall. The scientists used ultra-short laser pulses to show discrete stages of ionization in this process, each of which lasts 100 attoseconds - a fraction of a billionth of a second. The results make a significant contribution to understanding how electrons move around in atoms and molecules.
In the same way as gravity brings a body to a halt on the floor of a valley, the nuclear force (which binds protons and neutrons to form the atomic nucleus) and the electrical force (which combines negatively charged electrons with the positively charged atomic nucleus to make an atom) hold these particles within a tiny space. This binding effect can also be depicted as a type of valley, which is also called a potential by physicists. In the world of quantum particles, it is, to a certain extent, a normal event to tunnel through the wall surrounding the potential well.
An international team of researchers working with Ferenc Krausz has now caught the electrons in the act of tunnelling through the binding potential of the atom nucleus under the influence of laser light. The physicists used the new tools provided by attosecond metrology. "For the first time, our findings confirmed in real time observation the theoretical predictions of quantum mechanics," says Ferenc Krausz, Director at the Max Planck Institute for Quantum Optics and head of the team of scientists.
The tunnelling effect can be explained by the wave behaviour of each particle. Macroscopic objects are extremely unlikely to tunnel, which is why the phenomenon has never been observed in them. In contrast, there is a significant probability that particles from the microcosmos will tunnel through areas where, according to the rules of traditional physics, they are not even supposed to be. The tunnelling effect is considered to be responsible for processes as varied as atomic nuclei decay and the switching process in electronic components. However, since it only lasts for an extremely short time, it has not yet been observed in real time."

No comments:
Post a Comment